#### ПРАВИТЕЛЬСТВО МОСКВЫ

#### ПОСТАНОВЛЕНИЕ

от 17 февраля 2004 г. N 92-ПП

# ОБ УТВЕРЖДЕНИИ МОСКОВСКИХ ГОРОДСКИХ СТРОИТЕЛЬНЫХ НОРМ (МГСН) 6.02-03 "ТЕПЛОВАЯ ИЗОЛЯЦИЯ ТРУБОПРОВОДОВ РАЗЛИЧНОГО НАЗНАЧЕНИЯ"

На основании статей 22 и 53 Градостроительного кодекса Российской Федерации, Закона города Москвы от 3 октября 2001 года N 64 "О градостроительных нормативах и правилах города Москвы" и во исполнение постановления Правительства Москвы от 9 октября 2001 года N 912-ПП "О Городской программе по энергосбережению на 2001-2003 годы в г. Москве" Правительство Москвы постановляет:

- 1. Утвердить и ввести в действие с 15 марта 2004 года Московские городские строительные нормы (МГСН) 6.02-03 "Тепловая изоляция трубопроводов различного назначения" (приложение).
- 2. Контроль за выполнением настоящего постановления возложить на первого заместителя Мэра Москвы в Правительстве Москвы Ресина В.И.

Мэр Москвы

Ю.М. Лужков

Приложение

к постановлению Правительства

Москвы

от 17 февраля 2004 г. N 92-ПП

постановлением Правительства

Москвы

от 17 февраля 2004 г. N 92-ПП

# МОСКОВСКИЕ ГОРОДСКИЕ СТРОИТЕЛЬНЫЕ НОРМЫ

# ТЕПЛОВАЯ ИЗОЛЯЦИЯ ТРУБОПРОВОДОВ РАЗЛИЧНОГО НАЗНАЧЕНИЯ

#### MΓCH 6.02-03

(ТСН 41-306-2003 г. Москвы)

- 1. Разработаны Государственным унитарным предприятием "Научно-исследовательский институт московского строительства" (ГУП "НИИМосстрой") (Петров-Денисов В.Г. научный руководитель; Сладков А.В.) при участии Жолудова В.С. (концерн "Степс"), Десятова С.В. (МЭИ), Шойхета Б.М. и Ставрицкой Л.В. (ОАО "Инжиниринговая компания по теплотехническому строительству "Теплопроект").
  - 2. Внесены Москомархитектурой.
- 3. Подготовлены к утверждению и изданию Управлением перспективного проектирования и нормативов и координации проектно-изыскательских работ Москомархитектуры.
- 4. Согласованы Департаментом топливно-энергетического хозяйства города Москвы, Департаментом градостроительной политики, развития и реконструкции города Москвы, Управлением научно-технической политики в строительной отрасли, Мосгорэкспертизой, Департаментом природопользования и охраны окружающей среды города Москвы, УГПС МЧС России города Москвы, Центром госсанэпиднадзора в городе Москве, Главным управлением природных ресурсов и охраны окружающей среды МПР России по городу Москве, ФГУП "Центр методологии нормирования и стандартизации в строительстве" Госстроя России.
- 5. Приняты и введены в действие с 15.03.2004 постановлением Правительства Москвы от 17.02.2004 N  $92-\Pi\Pi$ .
- 6. Зарегистрированы Госстроем России в качестве территориальных строительных норм TCH 41-306-2003 г. Москвы (письмо от 18.12.2003 N 9-29/995).

# Предисловие

Московские городские строительные нормы "Тепловая изоляция трубопроводов различного назначения" (МГСН 6.02-03) разработаны в соответствии с постановлением Правительства Москвы от 09.10.2001 N 912-ПП "О городской программе по энергосбережению на 2001-2003 гг. в г. Москве".

Нормы разработаны на основе ГОСТ 30732, теоретических исследований ГУП "НИИМосстрой" и МЭИ по оптимизации норм плотности тепловых потоков через поверхности изоляции трубопроводов и соответствующих расчетов по специальной компьютерной программе.

Совокупность требований настоящего нормативного документа направлена на повышение энергоэффективности теплоизоляционных конструкций трубопроводов систем инженерного оборудования и теплоснабжения зданий и снижение энергопотребления в г. Москве.

# 1. Область применения

- 1.1. Настоящие нормы распространяются на проектирование новых и реконструкцию существующих систем инженерного оборудования и теплоснабжения жилых домов и зданий общественного назначения, в том числе и внешние сети.
- 1.2. Нормы обязательны для применения юридическими лицами независимо от организационно-правовой формы и формы собственности, а также иностранными юридическими и физическими лицами, осуществляющими деятельность в области проектирования и строительства на территории г. Москвы, если иное не предусмотрено федеральным законом.
- 1.3. Нормы устанавливают обязательные величины плотности теплового потока через поверхность изолируемых трубопроводов, исходя из оптимизации капитальных затрат на теплоизоляцию и стоимости тепла, теряемого ими в окружающую среду в процессе эксплуатации.

#### 2. Нормативные ссылки

В настоящих нормах использованы ссылки на следующие нормативные документы:

СНиП 23-01-99 "Строительная климатология".

СНиП 23-02-2003 "Тепловая защита зданий" (взамен СНиП  $\Pi$ -3-79\* "Строительная теплотехника").

СНиП 41-01-2003 "Отопление, вентиляция и кондиционирование".

СНиП 41-02-2003 "Тепловые сети".

СНиП 41-03-2003 "Тепловая изоляция трубопроводов и оборудования".

СНиП 2.03.11-85 "Защита строительных конструкций от коррозий".

СП 41-103-2000 "Проектирование тепловой изоляции оборудования и трубопроводов".

СНиП 2.03.11-85 "Защита строительных конструкций от коррозий".

ТСН 23-304-99 г. Москвы / МГСН 2.01-99 "Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению" с дополнениями.

ГОСТ 30732-2001 "Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке. Технические условия".

#### 3. Общие положения

- 3.1. Трубопроводы нижеперечисленных систем инженерного оборудования зданий подлежат тепловой изоляции:
- отопления и горячего водоснабжения: при прокладке в неотапливаемых подвалах, чердаках, в подпольных каналах для обеспечения нормативных тепловых потерь;
- холодного водоснабжения: при прокладке в отапливаемых помещениях для исключения конденсации водяных паров из окружающего воздуха на их поверхности;
- кондиционирования: при любых способах прокладки для обеспечения нормативных холодопотерь или при прокладке в отапливаемых помещениях для исключения конденсации водяных паров.
- 3.2. Трубопроводы систем централизованного теплоснабжения зданий подлежат тепловой изоляции при всех способах прокладки.
- 3.3. Для тепловой изоляции трубопроводов систем инженерного оборудования и теплоснабжения зданий, как правило, следует применять полносборные или комплектные конструкции, а также трубы с тепловой изоляцией полной заводской готовности.
- 3.4. В качестве теплоизоляционных материалов для изоляции трубопроводов различного назначения, сооружаемых в г. Москве, следует применять материалы с теплопроводностью в сухом состоянии не выше 0,06 Вт/м°С (при 20 °C).

# 4. Требования к теплоизоляционным конструкциям,

# изделиям и материалам

- 4.1. Теплоизоляционные конструкции следует предусматривать из следующих обязательных элементов:
  - теплоизоляционного слоя;
  - армирующих и крепежных деталей;
  - покровного слоя.
  - 4.2. В зависимости от температурно-влажностных условий эксплуатации в теплоизоляционных

конструкциях используются дополнительные элементы:

- при воздействии капельной влаги на наружную поверхность теплоизоляции (атмосферные осадки при надземной прокладке трубопроводов; капель с внутренней поверхности перекрытия канала в зимний период при подземной канальной прокладке) требуется устройство гидроизоляционного слоя, иногда совмещаемого с покровным;
- при температуре поверхности изолируемого объекта ниже температуры окружающей среды для предотвращения увлажнения изоляции с открытопористой структурой (волокнистые материалы и т.д.) диффундирующим в нее из окружающего влажного воздуха паром необходимо предусматривать пароизоляционный слой.
- 4.3. Для теплоизоляционного слоя трубопроводов отопления и горячего водоснабжения следует применять фасонные изделия в виде цилиндров и полуцилиндров из волокнистых материалов на синтетическом связующем с металлическим покровным слоем, а при использовании пенополиэтилена и пенокаучуков без покровного слоя.
- 4.4. В качестве теплоизоляционного слоя для трубопроводов холодильных установок и воздуховодов систем кондиционирования воздуха следует использовать изделия из пенополиэтилена и пенокаучуков в виде полых цилиндров и листов без покровного слоя (при коэффициенте сопротивления диффузии не менее 3000).
- 4.5. Для теплоизоляционного слоя трубопроводов холодного водоснабжения, обеспечивающего отсутствие конденсации водяного пара на их поверхности, следует применять изделия в виде полых цилиндров из вспененного полиэтилена и пенокаучуков без покровного слоя (при коэффициенте сопротивления диффузии не менее 3000).
- 4.6. В качестве теплоизоляционного слоя для трубопроводов систем теплоснабжения зданий при наземной прокладке следует использовать:
- а) индустриальную конструкцию теплоизоляции из пенополиуретана в спиральновитой оболочке из оцинкованной тонколистовой стали;
- б) маты прошивные и на синтетическом связующем из негорючих материалов (минеральное и стекловолокно) с металлическим покровным слоем;
- в) фасонные изделия из пенополиуретана (цилиндры, полуцилиндры и скорлупы) с металлическим покровным слоем с устройством вставок длиной 3 м из негорючих материалов не менее чем через 100 м длины теплопроводов.
- 4.7. При прокладке теплопроводов в подземных проходных и полупроходных каналах, позволяющих осуществлять контроль за состоянием теплоизоляционных конструкций в процессе эксплуатации, для устройства теплоизоляционного слоя следует использовать материалы и изделия, рекомендуемые СНиП 41-03, но в качестве покровного слоя применять негорючие материалы.
- 4.8. Толщину металлических листов, лент, применяемых для покровного слоя, в зависимости от наружного диаметра изоляции следует принимать по таблице 1.

Таблица 1

(размеры в миллиметрах)

| Материал           | Толщина листа при диаметре изоляции |                |                 |          |  |
|--------------------|-------------------------------------|----------------|-----------------|----------|--|
| покровного слоя    | 350 и менее                         | св. 350 до 500 | св. 600 до 1600 | св. 1600 |  |
| Ленты и листы из   | 0,35-0,5                            | 0,5            | 0,5-0,8         | 0,5-0,8  |  |
| нержавеющей стали  | 0.25.0.5                            | 0.5.0.0        | 0.0             | 1.0      |  |
| Листы из           | 0,35-0,5                            | 0,5-0,8        | 0,8             | 1,0      |  |
| тонколистовой      |                                     |                |                 |          |  |
| стали, в том числе |                                     |                |                 |          |  |
| с полимерным       |                                     |                |                 |          |  |
| покрытием          |                                     |                |                 |          |  |
| Листы из алюминия  | 0,25-0,3                            | 0,3-0,8        | 0,8             | 1,0      |  |
| и алюминиевых      |                                     |                |                 |          |  |
| сплавов            |                                     |                |                 |          |  |

4.9. Для теплоизоляционных конструкций, подвергающихся воздействию агрессивных сред, следует предусматривать защиту металлических покрытий от коррозии в соответствии со СНиП 2.03.11.

При применении в качестве защитного покровного слоя листов и лент из алюминия и алюминиевых сплавов и теплоизоляционного слоя в стальной неокрашенной сетке или при устройстве каркаса следует предусматривать установку под покровный слой прокладки из рулонного материала или окраску защитного покрытия изнутри битумным лаком.

- 4.10. При изоляции трубопроводов жесткоформованными изделиями следует предусматривать вставки из негорючих материалов в местах устройства температурных швов.
- 4.11. Конструкция тепловой изоляции должна исключать деформацию и сползание теплоизоляционного слоя в процессе эксплуатации. На вертикальных участках трубопроводов через каждые 3-4 м по высоте следует предусматривать опорные конструкции, за исключением теплоизоляции в заводском монолитном исполнении.
- 4.12. Температурные швы в покровных слоях горизонтальных трубопроводов предусматриваются у компенсаторов, опор и поворотов, а на вертикальных трубопроводах в местах установки опорных конструкций.
- 4.13. Для конструкций тепловой изоляции трубопроводов с отрицательными температурами изолируемой поверхности крепление покровного слоя следует предусматривать, как правило, бандажами. Крепление покровного слоя винтами допускается использовать при диаметре изоляционной конструкции более 800 мм.
- 4.14. Теплоизоляционные конструкции из горючих материалов с теплоизоляционным слоем из пенополиэтилена, пенополипропилена, пенокаучука, пенополиуретана и др. не допускается предусматривать для трубопроводов, расположенных в зданиях, кроме зданий IVa и V степеней огнестойкости, одно- и двухквартирных жилых домов.

Допускается применение теплоизоляционного слоя из горючих материалов (пенополиэтилена, пенополипропилена, пенокаучука и др.) для трубопроводов, расположенных:

- в подвальных этажах, имеющих выходы только наружу зданий I и II степеней огнестойкости, при устройстве вставок длиной 3 м из негорючих материалов не менее чем через 30 м длины трубопровода;
  - на открытом воздухе при надземной прокладке с устройством вставок длиной 3 м из

негорючих материалов не менее чем через 100 м длины трубопровода;

- в непроходных подземных и подпольных каналах с устройством через 100 м по длине трубопроводов глухих противопожарных перегородок первого типа;
- в проходных каналах и тоннелях при разделении их на отсеки протяженностью не более 200 м противопожарными перегородками первого типа с противопожарными дверями второго типа, причем при вводе трубопроводов в здания непроходные каналы и проходные тоннели должны отделяться от здания глухими противопожарными перегородками первого типа.

#### 5. Расчет тепловой изоляции

#### 5.1. Основные расчетные зависимости для определения

# теплозащитных свойств теплоизоляционных конструкций

Для теплового расчета изоляции используются уравнения стационарной теплопередачи через плоские и криволинейные поверхности.

Теплопередача плоской теплоизоляционной конструкции, состоящей из "n" слоев изоляции, рассчитывается по формуле:

плоской однослойной:

$$t - t$$
 $B H$ 
 $q = -----;$ 
 $F R + R + R + R$ 
 $BH CT NS H$ 

(2)

криволинейной п-слойной:

криволинейной однослойной:

где:

q - поверхностная плотность теплового потока через плоскую
F

теплоизоляционную конструкцию, вт/кв. м;

t - температура среды внутри изолируемого оборудования,  ${}^{\circ}\text{C}\text{;}$ 

В

t - температура окружающей среды,  ${}^{\circ}$ С;

Η

R - термическое сопротивление теплоотдаче на поверхности вн

внутренней стенки изолируемого объекта, кв. м°С/вт;

R - то же на наружной поверхности теплоизоляции, кв. м $^{\circ}$ С/вт;

Н

R - термическое сопротивление кондуктивному переносу теплоты

Не является официальной версией, бесплатно предоставляется членам Ассоциации лесопользователей



```
СТ
стенки изолируемого объекта, кв. м°С/вт;
   R - то же плоского слоя изоляции, кв. \text{м}^{\circ}\text{C}/\text{вт};
   из
   n
   SUM R - полное термическое сопротивление кондуктивному
   i=1 i
переносу теплоты п-слойной плоской изоляции;
   R - термическое сопротивление i-го слоя, кв. {\tt m}^{\circ}{\tt C}/{\tt вт};
   i
   q - линейная плотность теплового потока через цилиндрическую
   T.
теплоизоляционную конструкцию, вт/м;
   L
   R - термическое сопротивление теплоотдаче на внутренней
    вн
поверхности стенки изолируемого объекта, м°С/вт;
   L
   R - то же на наружной поверхности изоляции, м°С/вт;
   Н
   L
   R - термическое сопротивление кондуктивному переносу теплоты
   СТ
цилиндрической стенки изолируемого объекта, м°С/вт;
   L
   R - то же цилиндрического слоя изоляции, м°С/вт;
   ИЗ
   n L
   SUM R - полное термическое сопротивление кондуктивному
```

Не является официальной версией, бесплатно предоставляется членам Ассоциации лесопользователей

переносу теплоты n-слойной цилиндрической изоляции;

i=1 i

L



i В уравнениях (1), (2), (3), (4) термические сопротивления теплоотдаче и кондуктивному переносу теплоты определяются по формулам: "дельта" 1 1 ИЗ R = -----; R = -----; R = -----; вн "альфа" н "альфа" из "ламбда" BH H ИЗ "дельта" "дельта" СТ = -----; R = -----; (5) "ламбда" і "ламбда" CT i CT 1 L L R R = -----; вн CT Н КN "пи" d "альфа" "пи" d "альфа" вн вн H ИЗ

R - термическое сопротивление i-го слоя, м°С/вт.

d

1



СТ 1 d L Η -----; СТ СТ 2"пи" "ламбда" d CTвн

1 d L Н R = ----- x ln -----**(7)** i i 2"пи" "ламбда" d i ВН

i

где:

"альфа" , "альфа" - коэффициенты теплоотдачи на внутренней BH

поверхности стенки изолируемого объекта и на наружной поверхности изоляции, Вт/кв. м°С;

"ламбда" , "ламбда" , "ламбда" – коэффициенты

теплопроводности соответственно материала стенки изолируемого объекта, изоляции i-го слоя, n-слойной изоляции, Вт/м°С;

"дельта" , "дельта" , "дельта" - толщины соответственно i su СT

стенки изолируемого объекта, однослойной изоляции, і-го слоя n-слойной изоляции, м;

CT CT

d , d - внутренний и наружный диаметры изолируемой трубы, м; вн н



из

d - наружный диаметр изоляции, м;

Н

i i

d , d — наружный и внутренний диаметры i-го слоя n-слойной n

изоляции, м.

Распределение температур в многослойной изоляции рассчитывается по формулам:

- температуры на внутренней и наружной поверхностях стенки изолируемого объекта плоской формы:

CT CT CT

$$t = t - q \times R ; t = t - q \times R ;$$
 (8)

BH B F BH H BH F CT

Н

- температура t на наружной поверхности первого слоя изоляции, 1

на границе 1 и 2 слоев:

H CT
$$t = t - q \times R; (9)$$
1 H F 1

и далее, начиная со 2-го слоя, на границах (i-1)-го и i-го слоев:

$$H$$
  $H$   $t = t$   $- q \times R$ ; (10)  $i$   $(i=1)$   $F$   $i$ 



- температура на наружной поверхности i-го слоя i-слойной стенки:

$$t = t + q \times R$$
. (11)

Для цилиндрических многослойных изоляционных конструкций структуры формул для расчета распределения температур имеют вид:

CT L CT CT L 
$$t = t - q \times R ; t = t - q \times R ;$$
 (12)

$$H$$
  $CT$   $L$   $t = t - q \times R$ ; (13)

H CT L
$$t = t - q \times R;$$
i1 (i=1) L i

$$t = t + q \times R$$
. (15)

Значения поверхностной и линейной плотности тепловых потоков, входящих в формулы (8)-(15), определяются по (1)-(4), а термические сопротивления - по (5), (6), (7).

При применении формул (1)-(3) необходимо знать коэффициенты теплопроводности изоляционных слоев. Поскольку они зависят от температуры, должны быть известны средние температуры каждого слоя, для определения которых необходимо знать температуры на границах слоев. Для их расчета используют метод последовательных приближений путем проведения нескольких расчетных операций.

На первом этапе, принимая для всех слоев среднюю температуру

изоляции, равную полусумме температур внутренней и наружной среды, теплопроводность находят идп этой температуре всех теплоизоляционных слоев. Затем по (1), (3) определяют значения (8) - (11)для плоской, ПО (12) - (15)ПО И ИЛИ q И для F L цилиндрической стенок рассчитывают температуры на границах слоев и средние температуры каждого слоя.

На втором этапе по найденным на первом этапе средним температурам слоев вновь определяют теплопроводность всех слоев, затем находят плотности потоков тепла и снова рассчитывают послойные температуры и так далее до требуемой точности расчета, то есть до тех пор, пока послойные температуры на k-м и (k-1)-м шаге будут отличаться не более чем на 5%. Обычно для этой цели необходимо проведение не более 3-4 расчетных операций.

Плотность теплового потока через теплоизоляционные конструкции трубопроводов, граничащих с грунтом, определяется по формулам (1)-(4), в которых термические сопротивления внешней теплоотдаче R H L И R заменяются термическим сопротивлением грунта, зависящим от H Конфигурации изолируемого объекта, расположения его в массиве грунта и теплопроводности последнего (см. пп. 6.2, 6.3).

# 5.2. Расчет тепловой изоляции трубопроводов

Расчет тепловых потерь через изолированную поверхность трубопроводов в общем случае следует выполнять по формулам (3), (4). Однако анализ особенностей теплообмена в теплоизоляционных конструкциях трубопроводов позволяет существенно упростить расчетные формулы.

Термическое сопротивление теплоотдаче от внутренней среды к внутренней поверхности стенки трубопровода для жидких и даже газообразных сред по сравнению с термическим сопротивлением кондуктивному переносу теплоты в изоляции составляет весьма незначительную величину и может не учитываться.

Исключение составляет весьма редкий случай, когда внутри объекта находится газовая среда и теплообмен между ней и внутренней поверхностью стенки осуществляется за счет естественной конвекции.

Стенки изолируемого трубопровода, изготовленные из металла, в 100 и более раз превышают Не является официальной версией, бесплатно предоставляется членам Ассоциации лесопользователей Приладожья, Поморья и Прионежья — <a href="www.alppp.ru">www.alppp.ru</a>. Постоянно действующий третейский суд.

теплопроводность изоляции, вследствие этого термическим сопротивлением стенки без заметного снижения точности расчета можно пренебречь.

Таким образом, основными расчетными формулами для определения тепловых потерь изолируемого оборудования являются:

- для плоских поверхностей и криволинейных диаметром более 2 м:

- для трубопроводов диаметром менее 2 м:

ИЗ

где:

термическое сопротивление кондуктивному переносу слоев изоляции и внешней теплоотдаче в (16), (17) определяется по формулам (5), p

(6), в которых расчетная теплопроводность изоляции "ламбда"

определяется с учетом снижения ее теплозащитных свойств в процессе эксплуатации по методике, изложенной в разделе 7, а коэффициент теплоотдачи на поверхности изоляции принимается по таблице 2.



# ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ, ВТ/КВ. М°С

| Изолированный<br>объект                                 | В закрытом помеш                             | На открытом<br>воздухе при скорости<br>ветра <3>, м/с |    |    |    |
|---------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|----|----|----|
|                                                         | Покрытия с малым коэффициентом излучения <1> | Покрытия с высоким коэффициентом излучения <2>        | 5  | 10 | 15 |
| Горизонтальные<br>трубопроводы                          | 7                                            | 10                                                    | 20 | 26 | 35 |
| Вертикальные трубопроводы, оборудование, плоская стенка | 8                                            | 12                                                    | 26 | 35 | 52 |

\_\_\_\_\_

# 5.3. Расчет тепловой изоляции по нормированной

#### плотности теплового потока

<sup>&</sup>lt;1> K ним относятся кожухи из оцинкованной стали, листов алюминиевых сплавов и алюминия с оксидной пленкой.

<sup>&</sup>lt;2> К ним относятся штукатурки, асбестоцементные покрытия, стеклопластики, различные окраски (кроме краски с алюминиевой пудрой).

<sup>&</sup>lt;3> При отсутствии сведений о скорости ветра принимают значения, соответствующие скорости 10~m/c.

определяются тепловые потери, удовлетворяющие производственно-техническим и технологическим требованиям.

Для определения толщины однослойной плоской и цилиндрической поверхности с диаметром 2 м и более используется формула:

Для цилиндрической поверхности диаметром менее 2 м предварительно из уравнения:

ст d + 2"дельта" + usОпределяют величину lnB, где B = -----; при этом

CT

d

멑

приближенные значения R следует принимать по таблице 3.

Н

L



L

# ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ R, M °C/ВТ

Н

| Условный | Внутри помещений |         |            |           |                  | На открытом воздухе |       |       |       |
|----------|------------------|---------|------------|-----------|------------------|---------------------|-------|-------|-------|
| диаметр  |                  | • •     |            |           | Для поверхностей |                     |       |       | ,     |
| трубы    | с малы           | IM      |            | с высоким |                  |                     |       |       |       |
|          | коэфф            | ициенто | M          | коэфф     | ициенто          | M                   |       |       |       |
|          | излуче           | кин     |            | излуче    | излучения        |                     |       |       |       |
|          | при те           | мперату | ре теплоно | сителя,   | сителя, °С       |                     |       |       |       |
|          | 100              | 125     | 150        | 100       | 125              | 150                 | 100   | 125   | 150   |
| 32       | 0,50             | 0,35    | 0,30       | 0,33      | 0,22             | 0,17                | 0,12  | 0,09  | 0,07  |
| 40       | 0,45             | 0,30    | 0,25       | 0,29      | 0,20             | 0,15                | 0,10  | 0,07  | 0,05  |
| 50       | 0,40             | 0,25    | 0,20       | 0,25      | 0,17             | 0,13                | 0,09  | 0,06  | 0,04  |
| 100      | 0,25             | 0,19    | 0,15       | 0,15      | 0,11             | 0,10                | 0,07  | 0,05  | 0,04  |
| 125      | 0,21             | 0,17    | 0,13       | 0,13      | 0,10             | 0,09                | 0,05  | 0,04  | 0,03  |
| 150      | 0,18             | 0,15    | 0,11       | 0,12      | 0,09             | 0,08                | 0,05  | 0,04  | 0,03  |
| 200      | 0,16             | 0,13    | 0,10       | 0,10      | 0,08             | 0,07                | 0,04  | 0,03  | 0,03  |
| 250      | 0,13             | 0,10    | 0,09       | 0,09      | 0,07             | 0,06                | 0,03  | 0,03  | 0,02  |
| 300      | 0,11             | 0,09    | 0,08       | 0,08      | 0,07             | 0,06                | 0,03  | 0,02  | 0,02  |
| 350      | 0,10             | 0,08    | 0,07       | 0,07      | 0,06             | 0,05                | 0,03  | 0,02  | 0,02  |
| 400      | 0,09             | 0,07    | 0,06       | 0,06      | 0,05             | 0,04                | 0,02  | 0,02  | 0,02  |
| 500      | 0,075            | 0,065   | 0,06       | 0,05      | 0,045            | 0,04                | 0,02  | 0,02  | 0,016 |
| 600      | 0,062            | 0,055   | 0,05       | 0,043     | 0,038            | 0,035               | 0,017 | 0,015 | 0,014 |
| 700      | 0,055            | 0,051   | 0,045      | 0,038     | 0,035            | 0,032               | 0,015 | 0,013 | 0,012 |
| 800      | 0,048            | 0,045   | 0,042      | 0,034     | 0,031            | 0,029               | 0,013 | 0,012 | 0,011 |
| 900      | 0,044            | 0,041   | 0,038      | 0,031     | 0,028            | 0,026               | 0,012 | 0,011 | 0,010 |
| 1000     | 0,040            | 0,037   | 0,034      | 0,028     | 0,026            | 0,024               | 0,011 | 0,010 | 0,009 |
| 2000     | 0,022            | 0,020   | 0,017      | 0,015     | 0,014            | 0,013               | 0,006 | 0,006 | 0,005 |

#### Примечания:

L

Н

- 1. Для промежуточных значений диаметров и температуры величина
- R определяется интерполяцией.

2. Для температуры теплоносителя ниже 100  $^{\circ}$ С принимаются данные, соответствующие 100  $^{\circ}$ С.

Затем по таблице натуральных логарифмов находят величину В и

определяют требуемую толщину изоляции по формуле:

Учитывая широкое применение в практике инженерных расчетов персональных компьютеров, для составления программы расчета требуемой толщины тепловой изоляции по нормированным тепловым потерям целесообразно использовать метод последовательных приближений, суть которого для случая однослойной цилиндрической теплоизоляции заключается в следующем.

Задаваясь начальным значением толщины изоляции "дельта", м,

0

определяемой требуемой точностью расчета, производят с помощью
последовательных шагов: 1, 2, 3, 4 ... і для толщины изоляции:
"дельта" = "дельта" x 1; "дельта" = "дельта" x 2; "дельта" =

1 0 2 0 3
"дельта" x 3 ... "дельта" = "дельта" x і вычисление линейной

0 і 0

1 2 і

плотности тепловых потоков q ; q ; ... q по уравнению:

T.

T. T.



СТ

i

На каждом шаге вычислений і производится сравнение q с L

заданным значением нормативного удельного потока q.

L

При выполнении условия:

$$i - q <= 0$$
 (22)

вычисления заканчиваются, а найденная величина "дельта" = i

"дельта" х і является искомой, обеспечивающей заданную величину

0

тепловых потерь.

В качестве расчетных параметров, обуславливающих тепловое взаимодействие окружающей среды с теплоизоляционной конструкцией, при определении толщины изоляции по нормируемым тепловым потерям следует принимать:

- температуру внутренней среды t - как среднюю за год

температуру вещества в изолируемом объекте;

- температуру наружной среды t при расположении изолируемого



объекта в помещении - на основании технического задания на проектирование, при его отсутствии равной 20 °С; при расположении на открытом воздухе - как среднюю за год температуру наружного воздуха (СНиП 23.01);

- коэффициент теплоотдачи от наружной поверхности теплоизоляции при расположении изолируемого объекта в помещении - по таблице 2, при расположении на открытом воздухе - по таблице 2 при скорости ветра 10 м/сек.

# 5.4. Расчет толщины изоляции, предотвращающей конденсацию

# влаги из воздуха на ее поверхности

Данный расчет производится для изолированных объектов, расположенных в закрытых помещениях и содержащих вещества с температурой ниже температуры окружающего воздуха.

В этом случае изоляция должна обеспечивать требуемый расчетный перепад между температурами наружного воздуха и поверхностью изоляции (t - t ), при котором исключается конденсация влаги из н п воздуха (таблица 4).

Таблица 4

РАСЧЕТНЫЙ ПЕРЕПАД (t - t), °C

н п

| t, °C | Относит | Относительная влажность воздуха "фи", % |     |     |     |     |  |  |  |
|-------|---------|-----------------------------------------|-----|-----|-----|-----|--|--|--|
| Н     | 40      | 50                                      | 60  | 70  | 80  | 90  |  |  |  |
| 10    | 13,4    | 10,4                                    | 7,8 | 5,5 | 3,5 | 1,6 |  |  |  |
| 15    | 14,2    | 10,9                                    | 9,1 | 5,7 | 3,6 | 1,7 |  |  |  |
| 20    | 14,8    | 11,3                                    | 8,4 | 5,9 | 3,7 | 1,8 |  |  |  |
| 25    | 15,3    | 11,7                                    | 8,7 | 6,1 | 3,8 | 1,9 |  |  |  |
| 30    | 15,9    | 12,2                                    | 9,0 | 6,3 | 4,0 | 2,0 |  |  |  |

Требуемая толщина изоляции "дельта", м, для плоских конструкций определяется по формуле:

а для цилиндрических – на основе метода последовательных  $\$  приближений.

Расчетное уравнение в этом случае будет иметь вид:

Задаваясь начальным значением толщины изоляции "дельта", м, 0
определяемой требуемой точностью расчета, например 0,001 м, с помощью последовательных шагов: 1, 2, 3 ... і для толщины изоляции: "дельта" = "дельта" х 1; "дельта" = "дельта" х 2;

Не является официальной версией, бесплатно предоставляется членам Ассоциации лесопользователей



1 0 2 0
"дельта" = "дельта" х 3 ... "дельта" = "дельта" х і производим
3 0 і 0

вычисление величин:

t - t t - t t - t

 н в н в н в

(-----); (-----); ... (-----) по уравнению (24).

t - t t - t t - t

 н п 1 н п 2 н п і

t - t H B

На каждом шаге вычислений і производится сравнение (-----) с  $\mathsf{t} - \mathsf{t}$  н пі

t - t н в заданным значением (-----), табл. 4. t - t н пр

При выполнении условия:

t - t t - t

н в н в

(-----) - (-----) >= 0 (25)

t - t t - t

н пі н пр

вычисления заканчиваются, а найденная величина "дельта" = i
"дельта" х і является с точностью до 1 мм заданной,

Не является официальной версией, бесплатно предоставляется членам Ассоциации лесопользователей



обеспечивающей отсутствие конденсации.

При расчете толщины изоляции по заданному перепаду температур (t-t) принимаются следующие расчетные параметры окружающей н п

#### среды:

- температура внутренней среды t и относительная влажность

воздуха "фи" - по техническому заданию на проектирование;

- температура наружной среды t - равной температуре помещения;

Η

- коэффициент теплоотдачи "альфа" на наружной поверхности изоляции объекта, расположенного в помещении и на открытом воздухе, при покровном слое с малым коэффициентом излучения (см. примечания к таблице 2) – 4 Вт/кв. м°С, с большим – 7 Вт/кв. м°С.

# 6. Расчет изоляции теплопроводов тепловых сетей

#### 6.1. Надземная прокладка

Тепловые потери через изолированную поверхность подающих и обратных трубопроводов тепловых сетей при надземной прокладке, при известной толщине изоляции "дельта", м, следует определять по

из

формуле (17), а термические сопротивления, входящие в эту формулу, - по (6). В качестве температур внутренней и наружной сред t и t принимают расчетные температуры теплоносителя и

окружающего воздуха, а коэффициент теплоотдачи "альфа" - по

Н

#### таблице 2.

И Н



При определении толщины изоляции трубопроводов тепловых сетей по нормированным значениям плотности теплового потока в качестве расчетных температур внутренней среды t принимаются среднегодовые

Н

температуры теплоносителя по таблице 5.

Таблица 5

Н

### СРЕДНЕГОДОВЫЕ ТЕМПЕРАТУРЫ ТЕПЛОНОСИТЕЛЯ В ВОДЯНЫХ ТЕПЛОВЫХ СЕТЯХ, °С

| Трубопровод | Расчетные температурные режимы |        |  |
|-------------|--------------------------------|--------|--|
|             | 95-70                          | 150-70 |  |
| Подающий    | 65                             | 90     |  |
| Обратный    | 50                             | 50     |  |

За расчетную температуру наружной среды: при круглогодичной работе тепловой сети - среднегодовая температура наружного воздуха, при работе только в отопительный период - средняя за отопительный период. Расчетный коэффициент теплоотдачи "альфа" -

по таблице 2.

последовательных приближений с использованием уравнения:



Окончание итерационного процесса вычислений при выполнении условия (22).

### 6.2. Подземная канальная прокладка

Тепловые потери через изолированную поверхность двухтрубной прокладки тепловых сетей в канале шириной "b" и высотой "h", м, на глубине "H", м, от поверхности земли до оси канала определяются по формуле:

$$\Pi$$
 (t - t)

 $RAH$  H

 $RAH$  (27)



```
пр
           R + R
             кан гр
а температура воздуха в канале t :
                 кан
         t t t
          в1 в2 н
        ----- + ------ + ------
        L L L L
        R + R R + R R + R
        из1 н1 из2 н2 кан гр
                              (28)
                    1
       1
             1
    кан
        ----- + ------ + ------
        L L L L
        R + R R + R R + R
        из1 н1 из2 н2 кан гр
 где:
               1 d + 2"дельта"
        L
        R = -----;
        из1
                         d
                  р
           2"пи" "ламбда"
                         1
                   ИЗ
                     d + 2"дельта"
               1
       L
```

Не является официальной версией, бесплатно предоставляется членам Ассоциации лесопользователей

R

= -----; (29)



```
из2
                                         d
                             р
                 2"пи" "ламбда"
                                         2
                             ИЗ
           L
                             1
           н1 2"пи" "альфа" (d + 2"дельта" )
                           к 1
           L
          R
                                                    (30)
           н2 2"пи" "альфа" (d + 2"дельта" )
                           к 2
                                         из2
                           1
                                                      (31)
                = -----;
                                 2b x h
             кан
               "пи" "альфа" х -----
                            к b + h
   П
  q - линейная плотность теплового потока от двухтрубной
   пр
подземной прокладки, Вт/м;
  d , d - наружные диаметры подающего и обратного трубопроводов,
   1 2
М;
  t , t - температуры подающего и обратного трубопроводов, {}^{\circ}\mathsf{C};
   в1 в2
   L L
  R , R - термические сопротивления изоляции подающего и
   из1 из2
```



```
обратного трубопроводов, м°С/Вт;
   L L
  R , R - термические сопротивления теплоотдачи от поверхности
   н1 н2
изоляции подающего и обратного трубопроводов, м°С/Вт;
  R - термическое сопротивление теплоотдаче от воздуха к
   кан
поверхности канала, м°С/Вт;
   "альфа" - коэффициент теплоотдачи в канале, принимается равным
11 BT/KB. M°C;
   "ламбда" - расчетная теплопроводность изоляции в конструкции,
         ИЗ
BT/M°C;
   "ламбда" – теплопроводность грунта, Bт/м°C, таблица 6;
          пρ
   "дельта" , "дельта" - толщины изоляции подающего и
         из1
                из2
обратного трубопроводов, м;
   K
  R - термическое сопротивление грунта, м°С/Вт, определяется по
   гр
формуле:
                                  0,25
                             H h
                             ЭКВ
                       ln[3,5 ----(-)]
                  к
                              h b
                 R
                                                        (32)
```

Не является официальной версией, бесплатно предоставляется членам Ассоциации лесопользователей

b

гр



где:

Н - эквивалентная глубина заложения грунта, учитывающая экв

сопротивление теплоотдаче от поверхности грунта к окружающему воздуху в общем термическом сопротивлении грунта:

Η

где:

"ламбда" – теплопроводность грунта 1,86  $\mathrm{Br/m}^{\circ}\mathrm{C}$  (таблица 6);

"альфа" - коэффициент теплоотдачи к наружному воздуху н

поверхности грунта, принимается равным 35  $Bt/kB. m^{\circ}C$  (табл. 2).


Для определения методом последовательных приближений толщины изоляции теплопроводов по заданной нормативной плотности теплового

 $-\Pi$ 

потока двухтрубной подземной канальной прокладки q ,  $B ext{т} / M$  (в

i

соответствии с приложением Д), при одинаковой толщине изоляции на подающем и обратном трубопроводе используются формулы:



к н



```
кан гр
  Задаваясь начальным значением толщины изоляции "дельта"
                                                          \Omega
(например, 0,001 м), производят с помощью последовательных шагов
1, 2, 3, 4 ... і по (34)-(37) для толщины изоляции "дельта" =
                                                        1
"дельта" х 1; "дельта" = "дельта" х 2; "дельта" = "дельта" х
                              0
                                          _п _п _п
3 \dots "дельта" = "дельта" х і вычисление q ; q ... q .
                                          пр1 пр2 прі
                                              _п
На каждом шаге вычислений і производится сравнение q с заданным
                                               прі
                        П
                                                  ПП
нормативным значением по q . При выполнении условия q - q
                        пр
                                                   прі пр
<= 0 (38) вычисления заканчиваются, а найденная величина "дельта"
```

а R и R - по (31) и (32).

0

тепловых потерь.

Таблица б

= "дельта" х 1 является искомой, обеспечивающей заданную величину

### ТЕПЛОПРОВОДНОСТЬ ГРУНТОВ



| Вид<br>грунта | Средняя<br>плотность,<br>кг/куб. м | Весовое<br>влагосодержание<br>грунта, % | Коэффициент теплопроводности, Вт/м °С |
|---------------|------------------------------------|-----------------------------------------|---------------------------------------|
| Песок         | 1480                               | 4                                       | 0,86                                  |
|               | 1600                               | 5                                       | 1,11                                  |
|               | "                                  | 15                                      | 1,92                                  |
|               | "                                  | 23,8                                    | 1,92                                  |
| Суглинок      | 1100                               | 8                                       | 0,71                                  |
| 3             | "                                  | 15                                      | 0,9                                   |
|               | 1200                               | 8                                       | 0,83                                  |
|               | "                                  | 15                                      | 1,04                                  |
|               | 1300                               | 8                                       | 0,98                                  |
|               | "                                  | 15                                      | 1,2                                   |
|               | 1400                               | 8                                       | 1,12                                  |
|               | "                                  | 15                                      | 1,36                                  |
|               | "                                  | 20                                      | 1,63                                  |
|               | 1500                               | 8                                       | 1,27                                  |
|               | "                                  | 15                                      | 1,56                                  |
|               | "                                  | 20                                      | 1,86                                  |
|               | 1600                               | 8                                       | 1,45                                  |
|               | "                                  | 15                                      | 1,78                                  |
|               | 2000                               | 5                                       | 1,75                                  |
|               | "                                  | 10                                      | 2,56                                  |
|               | "                                  | 11,5                                    | 2,68                                  |
| Глинистые     | 1300                               | 8                                       | 0,72                                  |
|               | "                                  | 18                                      | 1,08                                  |
|               | "                                  | 40                                      | 1,66                                  |
|               | 1500                               | 8                                       | 1,0                                   |
|               | "                                  | 18                                      | 1,46                                  |
|               | "                                  | 40                                      | 2,0                                   |
|               | 1600                               | 8                                       | 1,13                                  |
|               | "                                  | 27                                      | 1,93                                  |

При расчете изоляции двухтрубных канальных прокладок тепловых сетей в качестве температур внутренней среды принимают среднегодовые температуры теплоносителя в подающих и обратных трубопроводах по таблице 5.

За расчетную температуру наружной среды при расстоянии от поверхности грунта до перекрытия канала 0,7 м и менее принимается та же температура наружного воздуха, что и при надземной прокладке. При расстоянии от поверхности грунта до перекрытия канала более 0,7 м - плюс 5 °C.

### 6.3. Подземная бесканальная прокладка

Тепловые потери двухтрубных тепловых сетей при бесканальной прокладке, расположенной в

грунте на расстоянии от поверхности до оси труб Н, м, определяются по формулам:

где:

"дельта"

R - термическое сопротивление грунта при бесканальной гр

прокладке, м°С/вт, определяется по формуле:

/----



где:

d - наружный диаметр труб, м; подающей - d , обратной - d ; 
$$1 \hspace{1.5cm} 2$$

"ламбда" – теплопроводность грунта, Bт/m°C;

Н - эквивалентная глубина заложения (по (33);экв

R - термическое сопротивление, обусловленное тепловым

взаимодействием двух труб, м°С/Вт, определяется из выражения:

в котором К — расстояние между осями труб по горизонтали, м. 1,2

Остальные значения величин в (39), (40) те же, что и в формулах (29), (30) для канальной прокладки.

Формула для определения методом последовательных приближений



(см. предыдущий раздел) толщин изоляции теплопроводов по заданной нормативной плотности теплового потока двухтрубной бесканальной прокладки при одинаковой толщине изоляции и диаметрах подающего и  $-^{\Pi}$  обратного трубопровода q ,  $B \pi/M$  (в соответствии с приложением Д),

пр

имеет вид:

L "дельта"
в которой R определяется по (36), R и R по (41), (42),
изі гр о

а условия окончания итерационного процесса вычисляют по (38).

### 7. Определение расчетных характеристик теплопроводности

### теплоизоляционных материалов

При расчетах толщин изоляции по нормативным значениям плотности теплового потока через изолированную поверхность трубопроводов для того, чтобы обеспечить требуемую нормированную плотность теплового



потока за все время эксплуатации теплоизоляционной конструкции
"тау" лет с учетом снижения при этом ее теплозащитных свойств, в
качестве расчетного значения коэффициента теплопроводности
р

"ламбда" ,  $Bт/m^{\circ}C$  , следует использовать среднеинтегральную из

величину теплопроводности за время "тау":

m

где:

"ламбда" ("тау" = 0, t ) - значение теплопроводности изоляции в  $$\rm m$$ 

начале эксплуатации, определяется по приложению A к  $C\Pi$  41-103-2000 при средней температуре изоляции t;

m

k - константа работоспособности изоляции, год (таблица 7).

При отсутствии в техническом задании расчетного срока эксплуатации теплоизоляционной конструкции его следует принимать 25 лет.

Таблица 7

### КОНСТАНТА РАБОТОСПОСОБНОСТИ ТЕПЛОИЗОЛЯЦИОННЫХ $\text{МАТЕРИАЛОВ } \ \text{K, } 1/\text{ГОД}$



| Типы<br>Условия про<br>трубопро-<br>водов     | окладки В отаплива- емых помеще- ниях Вид изоляции | В неотапливаемь подпольных кана |                                 | рдаках,                           | Надземная                |              |
|-----------------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------|-----------------------------------|--------------------------|--------------|
|                                               | пенокаучук<br>пенопласты<br><**>                   | волокнистая<br>волокнистая      | пенопласты<br>пенопласты<br><*> | пенокаучук<br>волокнистая<br><**> | волокнистая<br>армопено- | пено-<br><*> |
| Отопления и горячего водоснаб-<br>жения       | -                                                  | -2<br>1,35 x 10                 | -3<br>7 x 10                    | -3<br>6,5 x 10                    | -                        | -            |
| Холодного<br>водоснаб-<br>жения               | -3<br>4,2 x 10                                     | -                               | -                               | -                                 | -                        | -            |
| Централи-<br>зованного<br>тепло-<br>снабжения | -                                                  | -2<br>1,35 x 10                 | -3<br>7 x 10                    | -                                 | -3<br>1,8 x 10           | -3<br>7 x 10 |
| Систем<br>кондицио-                           | -3<br>6,5 x 10                                     | -                               | -                               | -                                 | -                        | -            |

нирования

Приложение А

к МГСН 6.02-03

(обязательное)

### НОРМЫ

\_\_\_\_\_

<sup>&</sup>lt;\*> Пенопласты с преимущественно закрытопористой структурой, пенополиуретан, пенополистирол и др.

<sup>&</sup>lt;\*\*> Пенокаучуки типа "Аэрофлекс", пенополиэтилен типа "Экофлекс" и др.

<sup>&</sup>lt;\*\*\*> Пенополиуретан в жесткой полиэтиленовой оболочке с дистанционным контролем влажности.

## ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА, ВТ/М, ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ СИСТЕМ ИНЖЕНЕРНОГО ОБОРУДОВАНИЯ ЗДАНИЙ, РАСПОЛОЖЕННЫХ В ПОМЕЩЕНИИ

Таблица А.1

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД 5200 И МЕНЕЕ

| Наружный  | Сред | няя темг | тература | теплонос | ителя, °С |     |
|-----------|------|----------|----------|----------|-----------|-----|
| диаметр   | 50   | 70       | 90       | 110      | 130       | 150 |
| трубы, мм |      |          |          |          |           |     |
| 18        | 12   | 16       | 20       | 24       | 28        | 32  |
| 25        | 14   | 18       | 23       | 27       | 32        | 36  |
| 45        | 18   | 24       | 29       | 34       | 40        | 46  |
| 57        | 20   | 26       | 32       | 38       | 44        | 51  |
| 76        | 23   | 30       | 37       | 44       | 51        | 58  |
| 89        | 26   | 33       | 40       | 48       | 55        | 62  |
| 108       | 29   | 37       | 45       | 53       | 61        | 69  |
| 133       | 33   | 42       | 50       | 60       | 68        | 77  |
| 159       | 37   | 47       | 56       | 67       | 76        | 86  |
| 219       | 46   | 58       | 69       | 81       | 92        | 104 |
| 273       | 54   | 68       | 81       | 93       | 107       | 120 |

Таблица А.2

ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД БОЛЕЕ 5200

| Наружный  | Средн | яя темпе | ратура те | плоноси | теля, °С |     |
|-----------|-------|----------|-----------|---------|----------|-----|
| диаметр   | 50    | 70       | 90        | 110     | 130      | 150 |
| трубы, мм |       |          |           |         |          |     |
| 18        | 10    | 13       | 17        | 20      | 24       | 28  |
| 25        | 11    | 15       | 19        | 23      | 27       | 32  |
| 45        | 14    | 19       | 24        | 29      | 34       | 39  |
| 57        | 16    | 21       | 27        | 32      | 38       | 43  |
| 76        | 19    | 24       | 31        | 37      | 43       | 50  |
| 89        | 20    | 27       | 33        | 40      | 46       | 53  |
| 108       | 22    | 30       | 37        | 44      | 51       | 59  |
| 133       | 25    | 33       | 41        | 49      | 57       | 65  |
| 159       | 29    | 37       | 46        | 54      | 63       | 72  |
| 219       | 35    | 45       | 55        | 66      | 76       | 86  |
| 273       | 41    | 53       | 65        | 76      | 87       | 99  |
|           |       |          |           |         |          |     |

Приложение Б

к МГСН 6.02-03

(обязательное)

### НОРМЫ

# ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА, ВТ/М, ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ СИСТЕМ ИНЖЕНЕРНОГО ОБОРУДОВАНИЯ ЗДАНИЙ, РАСПОЛОЖЕННЫХ В ПОДВАЛАХ, ЧЕРДАКАХ И ДРУГИХ НЕОТАПЛИВАЕМЫХ ПОМЕЩЕНИЯХ

Таблица Б.1

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД 5200 И МЕНЕЕ

| Наружный  | Средн | яя темпе | ратура те | плоноси | теля, °С |     |
|-----------|-------|----------|-----------|---------|----------|-----|
| диаметр   | 50    | 70       | 90        | 110     | 130      | 150 |
| трубы, мм |       |          |           |         |          |     |
| 18        | 7     | 10       | 14        | 18      | 21       | 26  |
| 25        | 8     | 12       | 16        | 20      | 25       | 29  |
| 45        | 11    | 16       | 22        | 27      | 33       | 38  |
| 57        | 13    | 19       | 25        | 31      | 36       | 43  |
| 76        | 16    | 23       | 29        | 36      | 43       | 50  |
| 89        | 17    | 25       | 33        | 40      | 47       | 54  |
| 108       | 20    | 29       | 37        | 45      | 53       | 61  |
| 133       | 23    | 33       | 42        | 51      | 61       | 69  |
| 159       | 27    | 38       | 48        | 58      | 68       | 78  |
| 219       | 35    | 48       | 61        | 73      | 85       | 97  |
| 273       | 41    | 57       | 73        | 87      | 101      | 115 |

Таблица Б.2

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД БОЛЕЕ 5200

| Наружный  | Сред | няя темі | тература | теплонос | ителя, °С |     |
|-----------|------|----------|----------|----------|-----------|-----|
| диаметр   | 50   | 70       | 90       | 110      | 130       | 150 |
| трубы, мм |      |          |          |          |           |     |
| 18        | 6    | 9        | 13       | 16       | 20        | 23  |
| 25        | 7    | 11       | 15       | 19       | 23        | 26  |
| 45        | 10   | 15       | 20       | 24       | 29        | 34  |
| 57        | 11   | 17       | 22       | 27       | 33        | 38  |
| 76        | 13   | 20       | 26       | 32       | 38        | 44  |
| 89        | 15   | 22       | 28       | 35       | 41        | 48  |
| 108       | 17   | 24       | 32       | 39       | 46        | 53  |
| 133       | 20   | 28       | 36       | 44       | 53        | 60  |
| 159       | 22   | 32       | 41       | 49       | 59        | 67  |
| 219       | 29   | 40       | 52       | 62       | 73        | 83  |
| 273       | 34   | 48       | 60       | 72       | 85        | 97  |

Приложение В

к МГСН 6.02-03

### НОРМЫ

### ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ С ОТРИЦАТЕЛЬНЫМИ ТЕМПЕРАТУРАМИ, РАСПОЛОЖЕННЫХ НА ОТКРЫТОМ ВОЗДУХЕ

Таблица В.1

| Наружный диаметр | Средняя | темпер   | атура веш | цества, °С |              |
|------------------|---------|----------|-----------|------------|--------------|
| трубопровода, мм | 0       | -10      | -20       | -40        | -60          |
|                  | Нормы л | пинейно  | й плотнос | ти тепло   | вого потока, |
|                  | $B_T/M$ |          |           |            |              |
| 18               | 3       | 3        | 4         | 6          | 7            |
| 25               | 3       | 4        | 5         | 6          | 8            |
| 45               | 4       | 5        | 5         | 7          | 9            |
| 57               | 5       | 5        | 6         | 8          | 9            |
| 76               | 6       | 6        | 7         | 9          | 10           |
| 89               | 6       | 6        | 8         | 10         | 11           |
| 108              | 7       | 7        | 9         | 11         | 13           |
| 133              | 8       | 9        | 12        | 14         | 16           |
| 159              | 8       | 9        | 10        | 13         | 16           |
| 219              | 10      | 10       | 12        | 16         | 18           |
| 273              | 11      | 12       | 14        | 18         | 20           |
| 325              | 12      | 13       | 16        | 20         | 23           |
| Плоские          | Нормы і | поверхн  | остной пл | отности т  | геплового    |
| поверхности      | потока, | Вт/кв. м |           |            |              |
|                  | 11      | 12       | 12        | 13         | 14           |

Таблица В.2

### НОРМЫ

### ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ПРИ РАСПОЛОЖЕНИИ ТРУБОПРОВОДОВ В ПОМЕЩЕНИИ

| Наружный диаметр | Средняя температура вещества, °С |          |           |           |              |
|------------------|----------------------------------|----------|-----------|-----------|--------------|
| трубопровода, мм | 0                                | -10      | -20       | -40       | -60          |
|                  | Нормы л                          | іинейної | й плотнос | ти теплон | вого потока, |
|                  | $B_T/M$                          |          |           |           |              |
| 18               | 5                                | 6        | 6         | 7         | 8            |
| 25               | 6                                | 7        | 7         | 8         | 9            |
| 45               | 7                                | 7        | 8         | 9         | 11           |
| 57               | 7                                | 8        | 9         | 10        | 12           |
| 76               | 8                                | 9        | 9         | 11        | 13           |
| 89               | 9                                | 9        | 10        | 12        | 13           |
| 108              | 10                               | 10       | 11        | 13        | 14           |
| 133              | 11                               | 11       | 12        | 14        | 16           |
| 159              | 12                               | 13       | 13        | 16        | 17           |
| 219              | 15                               | 16       | 16        | 19        | 21           |
| 273              | 16                               | 17       | 19        | 20        | 23           |
| 325              | 19                               | 20       | 21        | 23        | 26           |
| Плоские          | Нормы г                          | поверхно | остной пл | отности т | еплового     |
| поверхности      | потока,                          | Вт/кв. м |           |           |              |
|                  | 15                               | 16       | 17        | 18        | 19           |

Приложение Г

к МГСН 6.02-03

(обязательное)

### НОРМЫ

### ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА, ВТ/М, ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ ДВУХТРУБНОЙ НАДЗЕМНОЙ ПРОКЛАДКИ ВОДЯНЫХ ТЕПЛОВЫХ СЕТЕЙ

Таблица Г.1

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД 5200 И МЕНЕЕ

| Наружный<br>диаметр трубы, мм | Нормы плотности теплового потока для подающей (65 °C) и обратной трубы (50 °C) | Нормы плотности теплового потока для подающей (90 °C) и обратной трубы (50 °C) |
|-------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 57                            | 37                                                                             | 44                                                                             |
| 76                            | 43                                                                             | 50                                                                             |
| 89                            | 46                                                                             | 55                                                                             |
| 108                           | 52                                                                             | 60                                                                             |
| 133                           | 59                                                                             | 68                                                                             |
| 159                           | 64                                                                             | 75                                                                             |
| 219                           | 79                                                                             | 92                                                                             |
| 273                           | 92                                                                             | 106                                                                            |
| 325                           | 103                                                                            | 119                                                                            |
| 377                           | 116                                                                            | 132                                                                            |
| 426                           | 125                                                                            | 145                                                                            |
| 480                           | 139                                                                            | 159                                                                            |
| 530                           | 150                                                                            | 171                                                                            |
| 630                           | 170                                                                            | 195                                                                            |
| 720                           | 192                                                                            | 217                                                                            |
| 820                           | 213                                                                            | 241                                                                            |
| 920                           | 234                                                                            | 265                                                                            |
| 1020                          | 254                                                                            | 291                                                                            |

Таблица Г.2

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД БОЛЕЕ 5200

| Наружный          | Нормы плотности      | Нормы плотности      |
|-------------------|----------------------|----------------------|
| диаметр трубы, мм | теплового потока     | теплового потока     |
|                   | для подающей (65 °C) | для подающей (90 °C) |
|                   | и обратной трубы     | и обратной трубы     |
|                   | (50 °C)              | (50 °C)              |
| 57                | 30                   | 36                   |
| 76                | 34                   | 41                   |
| 89                | 37                   | 45                   |
| 108               | 41                   | 49                   |
| 133               | 46                   | 55                   |
| 159               | 51                   | 60                   |
| 219               | 62                   | 73                   |
| 273               | 71                   | 84                   |
| 325               | 80                   | 94                   |
| 377               | 89                   | 104                  |
| 426               | 97                   | 113                  |
| 480               | 106                  | 124                  |
| 530               | 115                  | 133                  |
| 630               | 131                  | 151                  |
| 720               | 146                  | 168                  |
| 820               | 160                  | 186                  |
| 920               | 178                  | 204                  |
| 1020              | 193                  | 222                  |
|                   |                      |                      |

Приложение Д

к МГСН 6.02-03

(обязательное)

### НОРМЫ

### ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА, ВТ/М, ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ ДВУХТРУБНОЙ ПОДЗЕМНОЙ И БЕСКАНАЛЬНОЙ ПРОКЛАДКИ ВОДЯНЫХ ТЕПЛОВЫХ СЕТЕЙ

Таблица Д.1

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД 5200 И МЕНЕЕ

| Наружный диаметр трубы, мм | Нормы плотности теплового потока для подающей (65 °C) и обратной трубы (50 °C) | Нормы плотности теплового потока для подающей (90 °C) и обратной трубы (50 °C) |
|----------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 57                         | 32                                                                             | 37                                                                             |
| 76                         | 37                                                                             | 42                                                                             |
| 89                         | 40                                                                             | 45                                                                             |
| 108                        | 45                                                                             | 51                                                                             |
| 133                        | 50                                                                             | 58                                                                             |
| 159                        | 57                                                                             | 65                                                                             |
| 219                        | 69                                                                             | 78                                                                             |
| 273                        | 78                                                                             | 88                                                                             |
| 325                        | 95                                                                             | 107                                                                            |
| 426                        | 116                                                                            | 128                                                                            |
| 480                        | 133                                                                            | 150                                                                            |
| 530                        | 161                                                                            | 178                                                                            |
| 630                        | 180                                                                            | 199                                                                            |
| 720                        | 200                                                                            | 222                                                                            |
| 820                        | 224                                                                            | 248                                                                            |
| 920                        | 248                                                                            | 274                                                                            |

Таблица Д.2

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД БОЛЕЕ 5200

| Наружный<br>диаметр трубы, мм | Нормы плотности теплового потока для подающей (65 °C) и обратной трубы (50 °C) | Нормы плотности теплового потока для подающей (90 °C) и обратной трубы (50 °C) |
|-------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 57                            | 25                                                                             | 30                                                                             |
| 76                            | 29                                                                             | 34                                                                             |
| 89                            | 31                                                                             | 36                                                                             |
| 108                           | 35                                                                             | 40                                                                             |
| 133                           | 39                                                                             | 46                                                                             |
| 159                           | 44                                                                             | 52                                                                             |
| 219                           | 54                                                                             | 62                                                                             |
| 273                           | 61                                                                             | 69                                                                             |
| 325                           | 73                                                                             | 84                                                                             |
| 426                           | 88                                                                             | 100                                                                            |
| 480                           | 102                                                                            | 115                                                                            |
| 530                           | 121                                                                            | 137                                                                            |
| 630                           | 137                                                                            | 153                                                                            |
| 720                           | 152                                                                            | 170                                                                            |
| 820                           | 168                                                                            | 187                                                                            |
| 920                           | 185                                                                            | 207                                                                            |
|                               |                                                                                |                                                                                |

Приложение Е

к МГСН 6.02-03

(обязательное)

### НОРМЫ

## ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА, ВТ/М, ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ ДВУХТРУБНОЙ ПОДЗЕМНОЙ КАНАЛЬНОЙ ПРОКЛАДКИ ВОДЯНЫХ ТЕПЛОВЫХ СЕТЕЙ

Таблица Е.1

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД 5200 И МЕНЕЕ

| Наружный<br>диаметр трубы, мм | Нормы плотности теплового потока для подающей (65 °C) и обратной трубы (50 °C) | Нормы плотности теплового потока для подающей (90 °C) и обратной трубы (50 °C) |
|-------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 57                            | 29                                                                             | 34                                                                             |
| 76                            | 32                                                                             | 39                                                                             |
| 89                            | 35                                                                             | 42                                                                             |
| 108                           | 39                                                                             | 47                                                                             |
| 133                           | 44                                                                             | 53                                                                             |
| 159                           | 49                                                                             | 59                                                                             |
| 219                           | 50                                                                             | 71                                                                             |
| 273                           | 71                                                                             | 83                                                                             |
| 325                           | 81                                                                             | 94                                                                             |
| 426                           | 98                                                                             | 115                                                                            |
| 480                           | 107                                                                            | 125                                                                            |
| 530                           | 118                                                                            | 137                                                                            |
| 630                           | 134                                                                            | 156                                                                            |
| 720                           | 151                                                                            | 175                                                                            |
| 820                           | 168                                                                            | 195                                                                            |
| 920                           | 186                                                                            | 216                                                                            |

Таблица Е.2

### ПРИ ЧИСЛЕ ЧАСОВ РАБОТЫ В ГОД БОЛЕЕ 5200

| Наружный<br>диаметр трубы, мм | Нормы плотности теплового потока для подающей (65 °C) и обратной трубы (50 °C) | Нормы плотности теплового потока для подающей (90 °C) и обратной трубы (50 °C) |
|-------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 57                            | 25                                                                             | 30                                                                             |
| 76                            | 29                                                                             | 35                                                                             |
| 89                            | 31                                                                             | 37                                                                             |
| 108                           | 34                                                                             | 40                                                                             |
| 133                           | 39                                                                             | 46                                                                             |
| 159                           | 42                                                                             | 50                                                                             |
| 219                           | 52                                                                             | 61                                                                             |
| 273                           | 60                                                                             | 71                                                                             |
| 325                           | 67                                                                             | 79                                                                             |
| 426                           | 81                                                                             | 96                                                                             |
| 480                           | 89                                                                             | 104                                                                            |
| 530                           | 96                                                                             | 116                                                                            |
| 630                           | 111                                                                            | 129                                                                            |
| 720                           | 123                                                                            | 144                                                                            |
| 820                           | 137                                                                            | 160                                                                            |
| 920                           | 151                                                                            | 176                                                                            |